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Rheological relationships linking mean and moment stresses and, also, the force 

and moment of interphase reaction in a macroscopic flow of small solid sphere 
suspension with the kinematic characteristics of the flow are derived. This 

makes it possible to close the system of equations of suspension hydrodynamics. 
Coefficients of viscosity and of moment viscosity of a suspension are obtained 
and calculated. 

The equations of conservation of mass, momentum and moment of momentum 
of suspension and of its phases, considered (from the macroscopic point of view) 

to be coexistent continuous media, were formulated in a general form in [l]. 
These equations contain unknown vectors and tensors which define the interac- 
tion between the considered continuous media and, also, stresses and moment 
stresses appearing when these are in motion. To close the equations of conser- 
vation it is necessary to express all these quantities in terms of unknown vari- 

ables of these equations (mean concentration of suspension, pressure in the 
fluid phases, and phase velocities). This problem is the second of the funda- 

mental problems of hydromechanics of suspensions indicated in [l]. 
Here this problem is solved with the use of a kind of self-consistent field 

theory, which is essentially an extension and generalization of methods devel- 

oped in [2 - 71. Expressions for all of the quantities mentioned above are de- 
rived. They can be considered to be rheological equations of state for suspen- 
sions. Expressions for the various coefficients of these equations and their de- 
pendence on parameters of phases and on the flow frequency spectrum are also 
considered. 

1. It was shown in [l] that in order to express the unknown terms of equations of 

conservation in terms of observable variables which define the macroscopic motion of 
suspension it is necessary to determine similar expressions for the mean stresses acting 
at the surface of an individual particle. In this case averaging is effected over a con- 
siderable number of particles under identical conditions. Hence it is natural to begin 

the analysis by introducing the statistical ensemble of particles (more precisely : their 
admissible configurations in space) and specifying the method of averaging over the 
ensemble. 

First, as in [8], we introduce the function of distribution for one of the N spherical 
particIes of the system, such that the probabilitv of finding the center of that particle 
in a volume element dr close to point r is rq (t, r)dr. We also introduce the condi- 
tional unary distribution function’ rp (t, rl r’) of finding the center of particle at point 
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r on condition that the center of another particle lies at point r’. Actually the last 

quantity represents a binary (two-particle) distribution function. 

We similarly introduce the unconditional distribution function cp (t, C,) for the en- 
semble of iV particles, where C, denotes the set of vectors r(i) (j ~1, 2, . . . , N) 
which determine the position of centers of all particles and, also, the related conditional 

distribution functions cp (t, CN_l 1 r) and cp (t, CN-~ 1 r, r’) associated with the situa- 
tion in which it is known that the centers of one or two spheres are, respectively, at P or 
r and 1” . We have the relationships 

cp (t, CY) = q 6 r) ‘P (t, CN-1 I r) (1.1) 

q (4 CN-~ 1 r’) = cp (4 r I r’) cp (4 CAT-Z 1 rr r’) 

Averaging over the ensemble is carried out using definitions 

(F) = (F)N =I F (t, r; CN)(P(t, CN)~CN (1.2) 

(F)’ = (F&L, = \ F (t, r; C~)q(t, CN-11 r')dCN-1 

(F)" = (F)i_, = 1 F(t, r; CN)T(~, CN-~I r', r")dC~-2 

where F is an arbitrary function of t and r which depends on the configuration of 

particles CN, and dCN is a volume element in a 3N-pdimensional space formed by 
the radius vectors of centers of N particles. It is evident that (F) is a function of t 
and r, (F)’ is a function of t, r and r’, while (I;)” is a function of t, r, r’ and 
r”. It is clear that 

(F) = 5 (F)’ (t, r; r’) q(t, r’) dr’ (1.3) 

(F)’ = 1 (F)“(t, r; r’, r”) cp (t, r’ \ P’) dr” 

In what follows the term mean quantities defines quantities averaged over the ensem- 
ble in accordance with (1.2). Averaging over a small physical volume (of the kind used 
in [I]) will be defined separately. The averaging operation (1.2) and differentiations 

with respect to the independent variable r commutate, i. e. 

(BF I dri) = (a I dri) (F) 0.4) 

and similar commutative relationships are valid for conditional averages in (1.2). 

For functions F whose characteristic variation time is smaller than the time scale 

T of distribution functions the following commutation relationship 

<g> = s$(t, r; CN)(P(~, CN)~CN = &{ F(t, r; CN)q(t, Civ)dCN+ (1.5) 

s 
F (t, r; CN) $(t, CN) z & (F) 

is approximately valid. 
Variation of the distribution function with time is determined by rhe redistribution of a 

great number of particles of the system. Hence scale T must be considerably greater 
than the time scale of microscopic quantities which define the flow at the level of 
individual particles. The latter is determined by the rate of change of the hydrodyna- 
mic environment in the neighborhood of a single particle, hence formula (1.5) is always 
satisfied for all of the indicated quantities. The time scale T of related averaged 
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quantities is determined by the rate of change of boundary conditions imposed on the 
suspension. Below, when considering unsteady flows, we assume that 

T>r (1.6) 

When this inequality is violated (T - T), the variation of the flow with time may 
be considered to be a flow process and, as shown below, the instability of the suspension 

macroscopic motion virtually does not affect the shaping of its rheological properties. 
A more detailed analysis of the relation between time scales is given in [l]. 

We further assume that the space scale L of the macroscopic flow is considerably 

greater than the mean distance between adjacent suspended particles, i,,e. that 

L > 1 - ap-‘18 (1.V 
where p (t, r) is the volume concentration and a the radius of suspended particles. 
The latter is the necessary condition of applicability of the method of mechanics of 

continuous media for defining macroscopic behavior of suspensions [l] , and means that 
the introduced ensemble is microscopically homogeneous, i. e. it is possible to sepa- 

rate a volume containing a great number of particles within which function rp (t, r) 
is virtually independent of r. However in macroscopic volumes, i.e. at distances com- 

mensurate with the L-scale, the distribution function (p (t, r) is generally nonuniform. 
The relation between cp (t, r) and the mean volume p(t, r) and the denumerable con- 
centration n (t, r) of particles, derived in Cl], is determined by 

n (4 r) = NV (t, 4, p (t, r) = 4/3 nc3NV (6 r) (1.9) 

We introduce the condition of “correlation attenuation” for any random function 

F (t, r; c,) which substantially depends on the position of many particles. Namely, 
we assume that the conditional averages (F)’ and (F)” calculated for configurations 
in which the centers of one or two particles fixed at points r or r’ and r” asymptotical- 
ly tend to the unconditional average (F) with unbounded increase of distances between 
point r and the centers of fixed particles. Thus 

lim (F)” = lim (F)‘= (F), 1 r - r’ 1 - 1 r - rn 14 30 (1.9) 

Physically this means that, for instance, the mean velocity or pressure of fluid at some 
point is virtually independent of the state of particles lying fairly far away from that 
point. Actually condition (1.9) becomes satisfied when i r - r’ 1 - 1 r - r” 1 exceed 
the “interaction scale” Li in a system which, without loss of generality, can be consid- 

ered a quantity of the order of L. Condition (1.9) is satisfied in the majority of cases 
of practical interest, except that of motion in narrow channels whose transverse linear 
dimension is of the order of Li or smaller. In the Latter case the correlations which are 

dependent on the long-range interaction between suspended particles are ‘considerable, 

and may, for instance, result in the formation of the “plug” type mode of flow in the 
channel. 

Inequalities (1.7) and (1.9) limit to a certain extent the class of systems to which 
the analysis described below is applicable, They are, however, valid for a fairly wide 
particular class of suspensions and their flow. 

Let us introduce the basic simplifying assumption about the structure and properties 
of the considered ensemble, namely, that the distribution of particles of the suspension 
is random, so that 
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v (4 r 1 r’) = 
i 

0, jr-r’)<2a 

cP(k r), Jr-r’I>2a (1.10) 

AS shown in [S], the assumption of total randomness of possible configurations CN of 
a cloud of particles (on the equal statistical weight of various configurations) can be 
strictly satisfied only in conditions of uniform flow and initial random distribution of 
suspended particles. In all other cases, owing to hydrodynamic interaction, a nontrivial 
binary distribution function, different from (1.10) and dependent on the properties of 

flow (an example of successive computation of such function for a simple shear flow 
appears in [9]), must be obtained. However, from the heuristic point of view, the con= 
cept of the system with random uncorrelated distribution of particles may be considered 
as the first approximation to actual systems with a specific microstructure defined by 
the pattern of hydrodynamic interaction between particles in this or that flow. It can be 

assumed that the results of calculations based on the hypothesis about the absence of 
correlation between the position of adjacent particles (except the condition of inpene- 

trability of particles implied by (1.10) may prove approximately valid also for a wide 
class of motions, in spite of the evident inaccuracy of the hypothesis itself. The widely 

used assumption, confirmed by experiments, that rheological parameters of suspension 
(e. g., its effective viscosity) are reasonably general, in the sense that they are virtually 
the same for flows and suspensions of various kinds and, consequently, of various micro- 

structures, tends to support the last statement. 

2, The obvious way of obtaining expressions for mean stresses at the surface of a par- 
ticle, required for formulating rheological equations of state and closing the system of 
equations of conservation, could consist of solving the problem of flow of an unsteady 
nonuniform fluid stream past a lattice of particles which at some instant are arbitrarily 

situated, and subsequent averaging of expressions for stresses defined by this solution 
over admissible configurations of particles in accordance with (1.2). 

Solution of the first problem in the general case, when the concentration of particles 
is not small and their hydrodynamic interaction cannot be neglected,is unknown and it is 
doubtful if it can be solved at present. Even if particles are stationary (e. g., in a sta- 
tionary granular layer) and the Reynolds number determining the flow past these is low, 
the no-slip conditions over a multi-connected surface of highly complex form must be 
satisfied. If, moreover, the particles can move, a particular “physical” nonlinearity ari- 

ses, since the solution of the hydrodynamic problem substantially depends on the velocity 
of translational and rotational motion of all particles, while the latter are in turn deter- 
mined by forces and moments acting on particles, i. e. on velocity and pressure fields 
in the fluid. In unsteady conditions these forces and moments also depend on the history 
of motion. The appearance of divergent integrals in the course of solution presents a 
further difficulty [S]. As shown below, these difficulties can be overcome by reversing 
the problem and deriving first the equations which define the flow around particles “on 
average”. Solution of these equations in the neighborhood of a sample particle of sus- 
pension makes it possible to directly determine the unknown mean stresses. 

First of all, let us formulate the equations of motion of fluid in particle interstices 
formally defined at all points of space occupied by the suspension. The flow of fluid, 
which is assumed to be incompressible. is governed by the Navier-Stokes equations 
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d, (a / at + VV) v = vr, - aE,vcD, vv=o (2.1) 

x = --I +2poE, Es f ar. I ;: , II 
av, II I -= II hj 11 

1 z 

where V (t, r) and P (t, r) are microscopic fields of velocity and pressure (for simph- 

city the symbol CN in the arguments of these functions has been omitted), and @ (t, r) 

is the potential of external mass for&. To extend the determination of Eqs. (2.1) over 
the entire space we introduce function 8 (t, r) which is equal unity at points of the 
fluid and vanishes inside particles. Let us consider the flow of fluid of density do0 (t, 

r) in which force 8VZ generated by stresses is acting (see also n]). Expression (2.1) 
for the microscopic stress tensor z (t, r) can be retained with the microscopic suspen- 
sion velocity C (t, r), which is the same as V (t, r) outside particles and the true velo- 

city of material inside these, substituted for V (t, r) . The equations of motion of such 
fluid are of the form 

d&J (a/at + VV) v = evr, - d&W@‘, 83 / dt + v (OV) = 0 (2.2) 

and coincides with (2.1) in the space between particles. 
Taking into consideration the properties of the averaging operation defined by (1.4) 

and (1.5) and that V@ is not affected by such averaging, from (2.2) we obtain the fol- 
lowing averaged equations : 

do (0 (8 /at + vv) v) = v (ez) - (me) - 4 (e) vm 
a(e)pt+v(ev)=o 

(2.3) 

All terms of these equations must be expressed in terms of observed quantities which 
define the macroscopic motion of suspension. For this, using the method of n], we obtain 

(e3:>= -((BP)I+~~,(E), (E)=+ f?$+!$$ 
0 II 

(2.4) 
3 z 

The definition of 8 (r, r) implies that 

ve = i r - r(i) 

jE1 I r - r(j) 1 
6 (I r - r(j) 1 - a) = 5 n6 (I r - r(j) 1 - a) 

i=i 

where r(j) is the radius vector of the j th particle center, n is the unit vector of the 

external normal at the surface of particles, and summation is carried out over all parti- 
cles of the system. Using this formula, the indiscernibility and statistical equivalence 
of particles of the ensemble, and the first of formulas (1.1). we obtain 

(me) = 5 S cp(t, C,) 6 (1 r - r(j) I - a) (Xn) dCN = 
j=l 

(2.5) 

N {cp(t, r’)6(1 r - r’l- a)((Z)‘n)dr’ = 

N Ida{dr’lp(t, r’)d(r-- r’- a) ((2)‘n) 

where a is the vector of module a, which connects the particle center with an arbitrary 

point of its surface. Formula (2.5) defines the total reaction of fluid on the suspended 
particles. Similar terms were previously introduced in equations of the kind of (2.3) in 
[ 3 - 51 on purely physical considerations. 

For the final determination of the relation between averaged terms in (2.3) and 
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observed quantities we resort to the condition of ergodicity in the following form. We 
stipulate the identity of Eqs. (2.3) which define the average motion of the suspension 

fluid phase with similar equations derived in [l] by averaging over a small physical 
volume of suspension. The latter are of the form 

dae(d/dt+vV)v=Oo -d&V@--f, &/dt+V(&v)=O (2.6) 
(E = 1 - p) 

where f(t, r) is the mean force of interphase interaction related to a unit volume of 

suspension and d (t, r) is the mean stress tensor defined in [l] by 

tJ=- &PI + 2p,e $- n ’ ((2)‘n) * ada, s e = $ 2 + 2 II J I (2.7) * 

where v(t, r), p (t, r) and c( t, r) are, respectively, the averaged over the volume 
velocity and pressure of fluid, and of suspension [ 11, the asterisk denotes dyadic multi- 
plication, and integration is carried out over the surface of a particle. 

Comparison of (2.3) and (2.4) with (2.6) and (2.7) yields 

(0) = E -’ 1 - o, ((Iv) = (ec) = EV, (c) - c, (6& = ep (2.8) 

0% = e, (e(aIat+Vv)V) =E(dy’at+vV)v 

Furthermore, we have the equality 

- (ZVO) = On 1 ((E)fn) * ada - f (2.9) 

Note that formulas of this kind are assumed in all works on similar subjects known to 

the authors (see, e. g. [3 - 81). Equalities (2.8) with the exception of the last one, are 
presented in an explicit form in n]. Formula (2.9) is considered in detail below ; one 
of its corollaries leads to the usual condition of the theory of selfconsistency. The mean- 

ing of the hypothesis about the equivalence of averaging over the ensemble and over 
the volume thoroughly discussed in [ 1 O]. 

Interesting are also the averaged equations which define (on average) the flow around 
a separated (sample) particle of a suspension. Such equations are derived from (2.2) by 

averaging over the conditional distribution function cp (t, Cs_i 1 r’), where r’ is the 
radius vector of the sample particle center. It is convenient to use in this case a system 
of coordinates attached to the sample particle center whose velocity in the laboratory 
system of measurements is w(t) , and to assume that the Reynolds number which defines 

the flow is small. The linear scale of perturbations induced in the stream by the sample 
particle is of the order of a. Consequently in analyzing the flow around the sample 

particle it is possible to consider in accordance with (1.6) and (1.7) that the quantity 
p (t, r) may be independent of coordinates and time. i. e. to consider the flow around 
a particle of a homogeneous cloud whose porosity is equal to the instantaneous value of 
local porosity of suspension. 

The assumption of random distribution of particles, which is reflected in (1.10) leads 
to the following expression for (e)’ : 

(2.10) 

Function 8* (r*) can be determined by analyzing the geometric problem of the por- 
tion of the volume of spherical layer (F* , r* + dr*), occupied by particles on the 
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assumption of uniform distribution of particle centers in region r > .%I in such a man- 
ner that this portion in that region is p = 1 - E. Evidently, 0* (a) = 1 ando*( 
E, where E is considered constant. 

Introducing the fluid relative velocity V* (t, r) = V (t, r) - W (t) and taking 
into account the smallness of the Reynolds number, in the coordinate system attached 

to the sample particle center we obtain instead of (2.2) the expression 

do (d / at) (ev*) = BVZ - doe (vo + dw / dt), de / dt -t c (ev*) = 0 (2.11) 

The quantity (W)’ = W (t, r’) represents the mean velocity of the disperse phase 
at point r’ and is independent of r. If we introduce in addition the translational velo- 
city W” (t, r) of the material of particles at an arbitrary point r determined in the 

described system of coordinates, then (W*)’ = W* (t, r Ir’) = w (t, r’) defines the 
mean velocity of the disperse phase at point r in that system. It is important that the 

linear scale of the latter parameter which for r = r' , is zero coincides with L and, in 
accordance with (1.7) considerably exceeds the scale a of perturbations induced in the 
stream by the sample particle. Hence, when investigating the flow around the sample 
particle (i. e. at distances which are small in comparison with L) , we can assume 

u* = (ev*)f = (ev* + (1 - 0) w*y = (c*y = (c)f - w (t, d) (2.12) 

where C* (t, r) is the microscopic velocity of suspension in the considered system of 
coordinates, and that derivatives of U* (t, r) with respect to components of vector r 
are equal to corresponding derivatives of (C) ‘, i. e. that 

aU* / 8ri = 3 (C)’ / dr, (2.13) 

Averaging (2.11) over the conditional distribution function cp (t, C~_~lr’), using(l.4) 
and the definition (2.12). and taking into account the relation (1.7) between scales, we 
obtain equations 

(~,du* / dt = v (ezy - (me)’ - d, ~3)’ vy vu* = 0 (2.14) 
Y=O+rdw/.dt 

where the effective potential Y (t, r) of external mass forces is introduced in the con- 

sidered system of coordinates. Allowing for (2.12) and (2.13) and proceeding in a simi- 
lar manner, we obtain 

(0X)’ = - (8)‘P”I -/- 2p,, (E)‘, (O)'P* = (OP)' (2.15) 

u au.* au * 
(E)‘= ; +-++ 

a qs 
-+- ari n 3 z 

(ZGCI)’ = (N - I) 1 cp(t, r” 1 r’) 6 (I r - r’ I- u) (( X>“n) dr” 

Owing to the property defined by (1.9) and relationships (2.8),(2.12) and (2.13) the 

asymptotic equalities 

lim P* = p, lim U* = c - w = E (v - w) = EU, lim (E)’ = e (2.16) 

lim rot U* = rot C (I r - r’ I-+ 33) 

are valid at some distance from the sample particle. In this formula u (t, r) is the 

fluid relative velocity averaged over the volume. These relationships define the unper- 
turbed flow as it would have been at the point r’ in the absence of the sample particle. 

Let us consider in greater detail the expressions (2.5) for (COO) and (2.15) for 
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(CVO)‘. The penultimate integral in (2.5) is a function of point r, hence it must be 
calculated on condition that r = const. Actually this is an integral taken over all 
possible positions of centers of spherical particles such that point I lies on their surface 
n]. To obtain a clear physical meaning of parameter (ZVO) it is expedient to expand 
the delta function in the integrand of the last integral in (2.5) into a Taylor series in 
powers of components of vector a and integrate termwise with respect to r’ . As the 

result we obtain 

(X0) = 5 9s (aV)” ((Z)‘n) NT (t, r) da (2.17) 
q=o . 

Allowing for (1. 8), for the kth component of vector (2.17) we obtain 

(2.18) 

gR,...mL (t, 1’) = - (-IT ’ a, 

u! s . * . a, (GM& 

The series (2.18) is the expansion of total reaction, which appears in the averaged equa- 
tions (2.3), in terms of multipoles, with related multipole moments defined by tensors 

‘JR, whose rank is equal to the order of multipoles. Thus the first term (a monopole) of 
this series defines the distributed force of interphase action in the suspension, the second 
(a dipole) defines the distributed couple of forces, etc. The fluid phase of suspension is 
thus equivalent to some homogeneous medium filling the complete space and subjected 
to the action of distributed force multipoles. The concept of the fictitious medium of 

this kind was introduced in phenomenological form in [Z] and formulated more exactly 

in [3- 71. 
However in all these works, with the exception of [7], the problem was considered on 

the assumption of point forces which approximates the effect of individual particles on 
the flow by that of a point force equal to the interaction force between particle and 
fluid and applied to the latter at the point occupied by the particle center. This implies 

in fact the neglect of all multipole terms of series (2.18), altough it can be readily shown 
on the basis of computations in [5, 73 that the contribution of multipole terms in Eqs. 

(2.13) is comparable to that of other terms of these equations. Note that similar hypo- 
theses about a fictitious medium were introduced in phenomenological form in investi- 
gations of effective thermal conductivity and moduli of elasticity of composite granu- 

lated materials (see review in [II]). 
Vector (ZV 0)’ in (2.15) can be represented in the form of series of the kind of 

(2.18). It will be readily seen that in region 11’ - r’ I) 3a the constraints imposed by 
the presence of the sample particle at point r’ on the possible position of other particles 
in accordance with (1.10) do not relate to particles which are in contact with point r 
and over which integration of (2.15) is carried out. Hence in the considered region vec- 
tor (XV 0)’ represents the functional of mean stresses (E)” at the surface of particles, 
which is of the same form as the functional of mean stresses (2)’ which determines 

(ZVf3,. 
However in region n < Ir - r’ 1 < 3a the centers of spheres in contact with point 

r and over whose radius vector I’# integration of (2.15) is carried out can only lie at 
points of the surface of sphere jrfl - r ( = a, whose distance from the sample particle 
center exceeds %z. (This can be readily derived from formula (1.10)). It follows that 
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the considered integration is actually extended only over the part of sphere Irn- r I= a, 
external to the sample particle, hence (Eve)’ * 1s in this region explicitly dependent on 
r* = r - r’. Similarly to (2.10) we can write 

(we)’ = 
i 

Q* (r*), a < 1 r - r’ 1 < 3a 

Q, 1 r - r’j> 3a 

where Q is a linear functional of (2)” 

m a 
(CVB)~’ = 2 F . . . 

q=o 1 
$ [n (4 r)” R;... mk (t, r)l 

m 

(2.19) 

(2.20) 

‘R;... w (t, r) = gl 
(---1)” ’ a, s . . . a, (( Z)“n) da 

of a form similar to that of functional (2.18), and it is known about functional Q* (r*) 
that for r* = 3a it is the same as functional (2.20) and vanishes for r* = a. Thus, 
from the phenomenological point of view, a sample particle may be considered as being 
submerged in the fictitious medium with distributed force multipoles and separated from 

the particle surface by an intermediate layer of thickness 2~2, concentric with the parti- 
cle, in which the properties of the “homogeneous” medium continuously vary from those 
of pure fluid to those characteristic of the indicated fictitious medium. The concept of 

the intermediate layer of this kind along the surface of the sample particle was first 

introduced in [12] and considered in [‘I, 111. 

9. Relationships derived in the preceding Section make it possible to define the 
linear problem of flow around the sample particle governed by Eqs. (2.14) in the form 

d,dU*ldt = - V(@)'P*)+ poAU* - (SVO)'- do (B)'V'P,VU*=O (3.1) 

U*=hx r (r=a); U*4Uo, P*4Po (r40~) 

where the frame of reference origin is at the particle center, A = A (t, r’ = 0) is the 

mean angular velocity of rotation of the particle, U,, and P, and the derivatives of U,, 

with respect to components of P are expressed in terms of observed quantities in accor- 
dance with (2.16). and (8)’ and (ZW3)' are formally defined by formulas (2.10) and 

(2.19). (2.20). respectively. 
For simplicity of calculations we neglect in what follows the intermediate layerwhich 

separates the sample particle from the fictitious medium, whose properties are indepen- 
dent of r. This approximation is of a typically operational character which, without 
introducing any fundamental complications, considerably simplifies computations. Phy- 
sically this is equivalent to the neglect of the effect of impenetrability of spherical 
particles (centersoftwo solid spheres cannot lie closer to each other than 2a), which is 

significant only at very high particle concentration. This assumption evidently limits 

the applicability of the developed theory to suspensions of moderate concentration. As 
shown by the analysis presented below and by the results cited in [7.], this theory is ap- 
proximately correct up to p - 0.2 - 0,3. 

Thus we assume (0)’ = E, (IWe) = Q. To close Eqs. (3.1) it is necessary to 
express in these vector Q (t, r) in terms of other unknowns. In accordance with(2.20) 
this vector is a linear functional of mean stresses acting at the surface of any particle 
of suspension in the proximity of the fixed sample particle, and the latter (stresses), 
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owing to the linearity of equations and of problem (3.1) in general, may be considered 
to be linear functionals of the indicated unknowns and their derivatives at the considered, 
as well as at the preceding instants of time. Hence it is possible to write Q( t, r)= 
F(U**, P**),where U** (t, r) and P ** t, r) are the mean velocity and pressure, ( 
respectively, at the center of a particle in the neighborhood of the sample particle on 

the assumption that this particle is removed from the system, while averaging is carried 

out over configuration of other particles compatible with the requirement for the pre- 

sence of this particle at the point. Generally these quantities are not the same as U*(t, 
r) and P* (t, r) obtained by averaging over all possible configurations of particles on 

the assumption that only the position of the sample particle is fixed (see the analysis of 
various kinds of averaging in [ 7, 81). Here we consider it possible to assume that appro- 

ximately 
(3.2) 

In fact, it is possible to formulate for U ** (I, r) and P** (t, r) new equations which 

in turn depend on new conditional averages obtained by averaging over configurations 
in which in addition to the sample particle the position of two other particles is fixed, 
etc. By continuing this process, we obtain a virtually infinite (Nsl) array of equations 
linked by common unknowns, whose termination and closure requires some independent 
hypothesis. (In this connection the problem is similar to that of closure of that infinite 

system of moment equations in the statistical theory of turbulence). Relationship (3.2) 

represents the simplest version of such hypothesis, and was successfully used in this capa- 
city previously [ 3 - 5, 71. It is not difficult in principle to extend the analysis of equa- 
tions of this array, using more refined hypotheses for its closure, similar to those used in 
the theory of turbulence or in statistical physics of fluids. The first step in this direction 

was made by Childress [6] who had considered equations for U** and P** in an explicit 

form for a steady flow in a rarefied system of particles (*) . However, taking into con - 
sideration that the error associated with the use of (3.2) is not very great and has the 

advantage of considerable simplification of computations, the use of that formula (3.2) 
in the present paper is entirely justified. 

To eliminate at once the effect of motion history and consider usual linear algebraic 

equations instead of (3.2), it is expedient to use the Fourier transform 

U* (t, r) = S @‘UcW) (0, r) do, I-‘* (t, r) = S eiwtP(w) (w, r) dOI, . . . 

Then making use of the formulated above simplifications, from (3.1) we obtain 

@,,A _ idOw) u’“’ _ e’@“) - (I’“’ L: 0, VU’“’ = 0, (3.3) 

G’“’ = PC”) + &<l’W 

l(W) L = A’“’ ‘, ’ p (r = a); u’“’ --f Ur’, PC”’ 3 pp’ (r 3 CO) 

It is possible to show on the basis of results obtained in [5, ‘71 and, also, those described 
below, that the monopole term in the expansion of Q(“) derived from (2.20) has the 

* ) The method used in [8j was the subject of critical analysis and was further developed by 
Howell at the University of Cambridge and submitted for publication in the Journal of 
Fluid Mechanics. 
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form of the sum of components proportional to VG@), U(a) and AU@J), and the dipole 
term has the form of the sum of terms proportional to VW’), AU@‘) and A2U@). The quad- 
rupole contains components proportional to AU(“) and A2UW, and subsequent multipole 
terms include components with various A’-rIJ(“) (q > 1) with q increasing with increa- 

sing order of the multipole. Taking into consideration that for q > 1 the values 
A”W) can be expressed in terms of U(m) and AU@) taken from Eqs.(3.3) themselves, 
we assume below 

Q’“’ = E>VG’“’ + AU’“’ + B AU’“’ (3.4) 

where A and B are some unknown coefficients. We introduce the apparent viscosity 
of the fictitious medium p,and coefficients of effective drag b2 defined by 

P., = PO - B, p2 = &1 (id@ + A) (3.5) 

and finally obtain the problem 

(A - /3”) U’“’ = p;‘VG’“‘, VU’“’ = 0 (3.6) 

U’“’ = A’“’ x r (r = a); U’“’ _+ El;“‘, G:“’ --, @“I (r-+03) 

Note that formula (3.4) can be obtained on the basis of the most general considera- 
tions. In fact, by neglecting in accordance with (3.2) the difference between U* * and 
p**,and U*and P*, we find that the hydrodynamic situation in the neighborhood of 
a certain particle is defined by three vectors Vi;(m), U(m) and AUW, only two of which 

are linearly independent (as can be readily seen from inspection of Eqs (3.3)). Because 

of the problem linearity we conclude that Q (4 (w , T) can only be a linear combination 

of these vectors containing two indeterminate coefficients, hence formula (3.4) is valid. 
The coefficient at VG@) in (3.4) may be, generally speaking, chosen arbitrarily. The 
analysis presented below indicates that the most reasonable choice is to set that coeffi- 

cient equal p . Coefficients A and B (or the quantities CL, and 0” in (3.5) and (3.6)) 

are so far unknown ; they are subsequently determined by the ergodic condition (2.9). 
The problem defined by (3.6) was solved in [3]. The importance of that solution is 

in that it makes possible to determine mean stresses at the surface of the sample parti- 

cle by conventional methods and, thus, to calculate the integrals which were used in n] 

for determining various rheological properties of suspensions. 
Integrating over the surface of the sample particle, after some simple but cumbersome 

computations, we obtain 

W)nda = d,,pVW”) + $p s 1 + I _1- & E2 
t 

(3.7) 

$P+$ et - 1 - E - + E2 

n (E(w)n)*ada = - pPr’I -+ 5ppn 
s 

-(I + E + fEz + &E3) Er’ 
i/-S 

(3.8) 

where x(a) is the Fourier transform of the stress tensor (E)’ at the surface of the sam- 
ple particle and E,(m) is the Fourier transform on the strain rate tensor (E)’ in (2.15) 

at some distance from the particle. The integral in (3.7) is obviously the Fourier trans- 
form of the force acting on particles in a unit of volume in a system of coordinates 
attached to sample particle center. 
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Taking into consideration that in accordance with previous statements particle con- 

centrations n’ and p may be assumed constant, from the ergodic condition (2. 9) and 

formulas (2.19),(3.4),(3.7) and (3. 8) we obtain 

A = gJ2w”aa-2 (1 + E + l/3E2) 

B=~~~.[~(ee-1-E-$E2)-~~~1+5+ 

$ E” + -& 5s)] 

(3.9) 

Using the definition of p” in (3.5) and the first of formulas (3.9). for E = pa we ob- 

tain the following quadratic equation : 

g* - iwo = 9 
/2P (1 + E + 1/3E2), Coo = w J Co*, CO* = p., (d&2)- (3.10) 

Equation (3.10) defines E as a function of p and of dimensionless frequency o” . The 
single positive for o” = 0 root of this equation is to be used. The definition of appa- 

rent viscosity pL,‘in (3.5) and the second of formulas (3.9) yield the new equation 

(3.11) 

The problem is thus completely determined. In the case of steady homogeneous flow 

the ergodic condition (2.9) becomes a condition of self-consistency which was earlier 

used on the basis of physical considerations in l-2 - 71. It usually yields for E an equa- 

tion which follows from (3.10) for 0’ = 0. 

The Fourier transform of force f ‘(t, r) and of moment m(t, r) of interphase action 
in a unit volume of suspension defined in the laboratory system of coordinates were 
actually calculated in [5]. Allowing for the difference between tensors (z)’ defined 
in the laboratory and convective frames of reference, owing to the presence in the latter 

of the force of inertia, which in the laboratory system for the Fourier transform of the 
stress tensor T(m) yields 

we obtain 
T(m) = (E:(W - d,‘l’@‘)I) + d,@+‘) 1 

f(m) = t2 T(m)n& = dol-‘~~w + + p -!I$_ JYUUI;“) + + PkLoj7(2)AUp’ 
c 

(3.12) 

m(O) = l 
c 

(T(“)n) x ada = 6pp, (M(l) ‘y2 rot U;m) _ M@)~(~)) (3.13) 
. 

where the coefficients 

F(i) = a (1 + E + l/,p). F(z) = 6aje2 (eE - 1 - g - ‘/,p) (3.14) 

M(i) = a (1 + EJ-‘ec, fII(2) = a (1 + g)-’ (1 + E + ‘I3 E,“) 

become equal to unity when 53 0 and, consequently, expressions (3.12) and (3.13) 
for p -+ 0 become the known formulas for the force and moment acting on n noninter- 

acting particles in a harmonic pulsating flow. 
For the Fourier transform of tensor o(t, r) from (2.7) and (3.8) we have 

g(‘~‘) r= - PI”‘1 + 2/J@” (3.15) 
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where we have introduced the coefficient of effective viscosity 

CL = po [I -t 5/2Pa (1 + 8-l (1 + E + 2/5E2 f 1/15F?l (3.16) 

Finally, for.the Fourier transform x (w) of the moment stress tensor x (t, r), averaged 
over the volume and determined in Cl], after computations we obtain 

(3.17) 

Xc”’ $- y(“) = n 
s 

(caa) * (TC”)n)?h = 27Yr’, e = 11 cijs 11, Y = $ II FikjJj 11” 

where E is the alternating Levi-Civita tensor, and tensor 

y@’ = + II a (rot Ub”‘). i3 (rot Ur’)j 
0 i3rj 1 + ari II 

is the Fourier transform of tensor 

y=+ 
II (3.18) 

where relationsips (2.16) are explicitly taken into account. In (3.17) we have also inL 
traduced the effective coefficient of “moment” viscosity 

.tl = a2~oap (1 + ,$ + 1/&,ye~ (3.19) 

Note that calculations actually result in the appearance in (3.15) and (3.17) of addi- 

tional terms proportional to AE,,@) and AY ,,(o), respectively. Taking into account that 
the scale of E,t”) and Y,,cB) is equal L, it is not difficult to show that the ratio of such 

terms to corresponding components in (3.15) and (3.17) with E,,(m) or Y,,(O) is of the 
order of (a / L)2, i. e. such terms can be neglected. 

Parameters a and E appearing in the above formulas are defined by (3.15) and (3.17). 
It will be readily seen that these and the introduced rheological coefficients ( 3.14), 

(3.16) and (3.19) depend on the stream frequency o, i. e. that frequency dispersion 

of these coefficients takes place. Thus f (t, r), m (t, r), c (t, r) and y. (t, r) which 
are defined as the inverse Fourier transforms of (3.12), (3.13). (3.15) and (3.17) respec- 
tively , represent in the general case some functionals of the velocity field unperturbed 
by the sample particle, and of its derivatives. 

The frequency dispersion is, however, important only for o” >, 1 (o 2 oh). The 

characteristic frequency oyc in (3.10) is usually very high, hence in practically impor- 
tant cases o” < 1, and the indicated frequency dispersion can be generally neglected, 
introducing “quasi-stationary” rheological.coefficients obtained from (3.14) (3.16) and 
(3.19) for o” = 0. 

Note also that for l/arotU,(W) and - AcW) the coefficients defined by (3.14) and 
appearing in (3.13) are different, although they become asymptotically the same when 

g + 0, i. e. in the case of diluted suspensions. This somewhat unexpested but theoreti- 
cally important result which shows that phenomenological attempts at equating these 
coefficients made in many known works are not sufficiently substantiated. 

4. Let us consider in more detail a flow whose characteristic frequency satisfies the 
condition o” < 1. From Eq. (3.10) we then have 

(4. I) 
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which coincides with the result obtained by Brinkman [Z], Tam [3] and others. The 

apparent viscosity r_~~(or coefficient cr) is determined by (3.11). Since the latter is a 
function of p it increases with p up to p z 0.2 and for p > 0.3 it rapidly falls with 
increasing p. This function which was determmed above by using the ergodic condition 
(2.9) is the same as the similar function determined in [ 71 by direct computation of the 

integral appearing in its definition in (2.15). The decrease of pCI with increasing p in 

the region p > 0.2 is explained by the rapid increase in that region of the component 

of interphase action force (3.7) which is proportional to the Laplacian of velocity which 

increases coefficient B in (3.9). 
Allowing for (2.16) and conditions for r + MI in (3.1) and (3.3), and using the last 

formulas in Sect. 3, we obtain the following rheological equations of state : 

m (1? r) = (ipy, (ill (I) ‘/2 rot, c - Ph) 

(T (t, P) T:~ - pl -t 2pe, x(t, I’) = 2t1y - 7 

Tensors e (t, P) and y (t, r) in (4.2) are defined by (2.7) and (3.18) respectively, and 
the coefficients F(l) and M(i) (i --: 1,2) and of viscosity p and q are represented in 

(3.14), (3.16) and (3.19) as functions of g and a defined, respectively, by (4.1) and 

(3.11). 
Let us write down the equations of motion of suspension as formulated in [1] but with 

allowance for relationships (4.2) which are valid for o” < 1. We have 
equations of conservation of mass of phases 

da / dt + c (EV) = 0, C?,r) / at + F ($)W) = 0 (4.3) 

equations of conservation of momentum of phases 

d,~ (C3 i c)t -t vG) v = - Op -{- 2F (pe) - “/4 ppOff”L’Ac - (4.4) 

a/Z p~.,a-.“Pe (v - \v) - C&G@ 

/I&(, (0 / (3t + WV) W’ z “/4 #tLoF”‘~ c + “/z p~oa~“F(‘)F. (v - w) - 

(d, - d,) ptcI, 

equations of conservation of moment of momentum of phases 

doe (8 / at + vV) K, = 20 (qy) - 6~~0 (fif”’ ‘1~ rot c - M”?‘h) - VT (4.5) 

?/b a’t&p (a / dt + WV) h = 6pp0 (ICI”’ l/z rot c - M’“‘h) 

where d,K, (1, r) is the mean internal moment of momentum of the continuum simur 
lating the fluid phase of suspension,and the similar parameter for the disperse phase is 

V$zV,X (t, r) Cl I. 
Equations defining particular kinds of flow are readily obtained from (4.3) - (4.5). 

For example, filtration of fluid through a stationary granulated layer is governed by the 
first of Eqs. (4.3) - (4.5) with c = F v , w = 0 and A == 0. In this case the effec- 
tive viscosity of the filtrated fluid is [t - Bli@poF@) = pa, i.e. it is equal to the 
apparent viscosity of the fictitious medium considered above. Equations for the one- 
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velocity model of a “homogeneous” suspension are similarly analyzed. The equation 
of conservation of momentum for such suspension is obtained by term-by-term addition 
of Eqs. (4.4) which shows that the effective viscosity is in this case equal p. 

Note that the rheological properties of the considered disperse system is wholly deter- 

mined by stresses which appear on the surface of the system particles, which in turn de- 
pend only on the nature of the relative flow of fluid and not on particular features of 
the absolute phase motion. It follows from the presented analysis that the rotation of 

particles has no effect whatsoever on the formation of rheological properties of continua 
which simulate suspension phases. Hence, in particular, there is no basic difference bet- 

ween the problem of fluid filtration through a granulated layer of stationary particles 

and that of flow of the suspension fluid phase in the sense that the rheological properties 
of both kinds of flows equally depend on the nature of the fluid relative motion, and 

when the latter are the same, these properties are, also, the same. This conclusion,which 

here appears to be an obvious corollary of the developed theory, contradicts the widely 
held view on the essential qualitative difference between the two problems. 

The apparent confirmation of the latter point of view by the work of Lundgren [7] is 
the result of the unnatural choice of initial representation for parameter Q substantially 

different from (3.4) for investigating the flow of suspension in a gravity field and the 
subsequent use of the averaged equation of conservation of momentum of the fictitious 
medium flowing past the sample particle, which differs from the equation analogous to 

(3.1) by a certain multiplier. This resulted in the incorrect determination in [ 71 of the 
mean stress tensor in the fluid flowing past the sample particle so that, for instance, the 
apparent viscosity of that fluid is not the same as the analogous quantity in the equa- 

tion of conservation of momentum of the fluid phase, which is derived by averaging 
over a small physical volume. The incorrect conclusion about the difference between 
the interphase interaction force f (t, r) in a suspension and a stationary granulated la- 

yer, derived on this basis, was used in [ 71 for explaining the effect of reduced hydraulic 

resistance of a pseudo-fluidized layer in comparison with that of a stationary granulated 
layer of the same porosity. Such explanation is evidently false ; the “regular” force 

f (t, r) is, in fact, in both cases the same, and the effect of lower resistance is apparently 
explained by appearance in the quasi-fIuidized layer of an additional nonzero interac- 
tion force induced by local porosity fluctuations in accordance with the model described 
in [13, 141. 

For p e 1 (3.16) with allowance for (3.11) and (4.1) yields the known result obtained 
by Einstein 

P = po (1 + O/‘*P) (4.6) 

We note in this connection that Pokrovskii l-151 proved the inaccuracy of this result and 
suggested the alternative formula 

P = PO (1 f 3/Izp) (4.7) 

which contradicts experimental data, and was subjected to deserved criticism (see, e. g. 
remarks in review [16]). Since this conclusion was repeated in subsequent works by 
Pokrovskii, we would point out the essence of the error made by him. He considered 

the conventional method of derivation of formula (4.6) incorrect because in it the ten- 
sor 

(4.3) 

was used as the averaged over the (observed) volume tensor of the suspension rate of 
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strain e (1, r) . He proposed,without any substantiation, to use that tensor multiplied by 
the suspension porosity E (t, r). This contradicts the strict result given by (2.7) which is 
always correct, except for w = 0 (i. e. the case of fluid filtration through a stationary 
layer). It is at the same time clear that to consider effective viscosity as the parameter 

defining the suspension as a whole has any meaning only in the opposite limit case of 

w (t, r) z v (t, r). when it is possible to consider a suspension as an approximation to a 
certain homogeneous medium, In the latter case tensor e (t, r) in (2.7) is the same as 

that defined by (4.8), as is usally tacitly assumed in the derivation of (4.6). Furthermore, 

for w = 0, when the considerations of the rate of strain tensor in [lS] are valid, formula 
(4.7) has no meaning whatsoever, since in that case the motion is defined by viscosity 
II,, and not p. 

In concluding we shall briefly discuss the assumptions made above. The first group 

of assumptions (on the relationships (1.6) and (1.7) between characteristic scales, on the 
insignificant effect of individual particles on the flow at distant points in accordance 

with (1.9) and on the smallness of the Reynolds number of the flow around particles) 
defines a fairly wide class of systems and their motions to which the proposed theory is 

applicable. 
The second group comprises three assumptions aimed at the simplification of reason- 

ing and computation. The first of these relates to the random distribution of particles 

in the neighborhood of any separated particle, as reflected in (1.10). Such assumption 
is evidently valid for chaotically packed stationary granulated layers but is not usually 
satisfied in the case of suspensions. However it follows from the analysis in [lS] that 
the effect of the exact form of the binary distribution function which defines preferred 
configurations of particle pairs in the stream is in many cases insignificant, which jus- 

tifies the use of that assumption. To reject it, it is necessary, in the first instance, to 

consider the interaction between two suspended particles in streams of various kinds, as 
was done in [9] for particles in a simple shear stream and then use a new relationship 
of the kind of (1.10) into which is introduced the binary function of distribution obtained 

by such analysis. 
Closely related to this is the second assumption about neglecting the effect of particle 

impenetrability with consequent assumption of the existence of a transition layer around 
the surface of the sample particle, in which the properties of the fictitious medium sub- 

stantially depend on coordinates. It follows from the above consideration and the com- 
parison of the obtained results with experimantal data that this assumption is approxi- 

mately valid for moderately concentrated suspensions with Q not exceeding 0.2 - 0.3. 
The rejection of this assumption is related to a considerably more complex mathemati- 
cal problem of flow around the sample particle ; it does not, however, introduce any 
fundamental difficulties. 

Finally, the assumption was made that the mean velocity and pressure at some point 
of fluid is approximately the same as the conditional means at that point, obtained by 
averaging only over admissible particle configurations as they would be if the center of 
one of the particles were located at the considered point. As previously stated this is 
the simplest hypothesis which makes it possible to close the theory. Although the ana- 
lysis of the limits of validity of this hypothesis and of the magnitude of the error intro- 
duced by it is very cumbersome,it can be carried out by the method described in [6]. 

We note that, owing to the assumption of smallness of the Reynolds number, the effect 
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of particle pulsation in the fluid on the formation of rheological properties of suspension 
is neglected here and in [ 11, although, theoretically, in a number of cases that effect 

may be substantial. We also note that all results obtained here define the suspension at 
some distance from its boundaries, hence the problem of adequate boundary conditions 
which must be imposed at surfaces of various kinds remains open. 

Let us briefly point out possible ways for extending developed here theory. First of 
all, it is not difficult to extend it to emulsions of drops or bubbles whose shape is close 
to spherical. The first step in this direction was taken in [S] by considering the inter- 

action between phases of an emulsion. The extension of this theory to suspensions of 
particles with asymmetric properties is also of great interest. Such are, in the first in& 
stance, suspensions of spheres with dipole moments in the related external field (e. g. 
suspension of magnetized particles in the presence of a magnetic field or particles with 
offset center of gravity in a gravitational field), as well as suspensions of spheroidal or 

ellipsoidal particles. 
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The paper deals with the method of inverting two singular integral equations 
of the first and second kind, respectively, possessing a definite structure, The 

equations as well as their solutions are obtained on the basis of analyzing a 
specific mixed problem of the potential theory for a quadrant, 

1, Let us seek two functions, ‘pr (z) and x1 (z) regular in the upper right quadrant, 
vanishig at infinity and satisfying the following conditions at the boundary rays: 

3t(Pr (t) j-xl(t) = ft.@>, t = %, 0 & z < 00 (1.1) 

qJr(t)+X1) =fz(t); t= Q/, o<y< 00 (1.21 

Generally speaking, x is a complex parameter and the specified functions fr (t) and 

fi (t) satisfy the Holder’s condition and are of the order 0 (1 / t) at infinity. In what 

follows we shall assume, without loss of generality, that fi (t) = 0. We arrive at this 

case by subtracting from the solution which is being sought, the particular solution for 

the right semi-plane with the condition (1.2) holding along its whole boundary (and in 

particular, when fs (t) . 1s zero on the negative half of the ordinates). 

Let us introduce the auxilliary function w (t) on the ray (0 < J: < oo) 

AR (4 -xl(t) = z~(~), o<t< co (1.3) 

where A is a certain complex constant. Adding and subtracting (1.1) and (I. 3) term 

by term, we obtain 

‘pl (t) = (1.4) 

let us now define new functions q) (2) and x (z) regular in the upper right quadrant 


